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Abstract - In generator side, a fault detection and diagnosis 
(FDD) is proposed based on Luenberger observer with the 
application to a five-phase tidal current power generation system. 
A five-phase PMSG dynamic model is firstly presented and then 
the Luenberger observer-based estimator is designed according to 
pole placement principles and sensitivity analysis. Thus, this 
proposed method allows detecting open switch and open phase 
faults with a rapid fault detecting speed. Simulation validations 
are presented afterwards respectively under healthy and faulty 
working conditions. The results show that the designed 
Luenberger observer owns the high robustness and detectability. 
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1. INTRODUCTION 
For the purpose of tidal energy extractions, the reliability and 

availability provide significant preliminaries. Investigation of 
advanced fault detection and diagnosis (FDD) methods is 
necessary for this issue, which facilitates the maintenance of 
power generation system under sea water environments [1-3]. 

FDD methods can be overall divided into model-based and 
data-based ones [4]. Here signal-based methods are incorporated 
into the data-based group due to the demands of data acquisition 
in practice. This work focuses on the model-based method 
considering computational burdens and algorithm complexity. 
Since the data-based methods, especially the artificial 
intelligence (AI)-based ones, they need collect amount of data 
for recognition tasks and use some complicated AI methods for 
FDD. As for model-based ones, the FDD process mainly 
depends on the residuals, which represents the errors (estimates 
and measurements) between mathematical model and physical 
systems. The quantity of residuals is affected by model 
uncertainties, which can be aroused by disturbances, noises and 
fault occurrences [5]. In the past several decades, there emerge a 
great number of successful state estimation methods [6-9], such as 
Kalman filter, Luenberger observer, sliding mode observer and 
so forth. The type of Kalman filter methods take accounts of 
process and measurement noises with a predicting mechanism. 
However, the optimizing iterations of the time-varying gain need 
some computations in real-time. Sliding mode observer is able 
to process the nonlinear problem but with overall complexities 
of its algorithm. Comparing with the above classical method, 
Luenberger observer provides a fixed gain of estimating errors 

in the initialized stage instead of iterations. In addition, selection 
of this gain is convenient by using of pole placement approaches 
concerning the dynamic performance and oscillations. To 
simplify the process of observer gains’ selection, a sensitivity 
analysis is given in this paper. On the basis of above analysis, a 
a fault detection and diagnosis (FDD) is proposed based on 
Luenberger observer is proposed using complete observer 
design procedures. 

2. 1. DYNAMIC MODEL OF FIVE-PHASE PMSG 
Fig. 1 indicates synoptic system diagram in generator side of 

the tidal current generation system. It consists of tidal current, 
turbine, 5-phase PMSG, generator side converter with five legs, 
maximum power point tracking (MPPT) unit as well as speed 
and torque control system. 
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Fig. 1. A tidal current power generation system (generator side) 

Assuming that saturation, eddy currents and iron loss are 
negligible for the 5 phase PMSG. Fig. 2 described the diagram 
for PMSG windings. Phase shifts of stator mutual inductance M1 
(adjacent phases) and M2 (non-adjacent phases) are respectively 
2π/5 and 4π/5. 
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Fig. 2. Five-phase PMSG Stator windings. 
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Based on the above star-connecting winding, electrical 
voltage equations of the PMSG in original abcde frames written 
in matrix form is given by 
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where ui and ei (i = a, b, c, d, e) respectively represent the phase 
voltage and the back electromagnetic force (EMF). Ls is the self-
inductance of the stator. 
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5-phase PMSG can be decomposed as primary, secondary 
and homopolar machines according to [10]. In this paper, the EMF 
of 5-phase PMSG contains two harmonics: the fundamental and 
the third harmonic associated to the primary and the secondary 
machine, respectively. Eq. (1) is thus converted to the following 
equation by applying Concordia transformation T5. Furthermore, 
Park transformation P(θ) and P(3θ) are separately applied to the 
primary machine and the secondary machine. The rotation 
transformation is presented as Eq. (3). 
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 Finally, the electrical voltage equation for 5-phase PMSG in 
dq0 frames is eventually deduced as Eq. (4). 
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M2  and 
L0dq=Ls+2M1+2M2 are the equivalent inductance for primary, 
secondary and homopolar machines. epd, epq, esd, esq and e0dq are 
the electromotive force under dq0 frames. Their expressions are 
given by 

1 30
5 50, , 32 2pq e sq edq pd sde e e e eω Φ ω Φ= = = = =  (5)

where Φ1 and Φ3 are respectively the permanent magnet flux 
from the first and third harmonics. 

3. LUENBERGER OBSERVER-BASED FDD METHOD 
Based on the model of applications described in section 2, 

the main principle of a design for Luenberger observer-based 
FDD method is presented in this part.  

3.1. Luenberger observer by five-phase PMSG model 
First of all, according to Eq. (4) and Eq. (5), the matrix form 

of five-phase PMSG model is given in Eq. (6). The general state 
space model is thus expressed as 
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where C = (1,1,1,1) by neglecting the component of homopolar 
machine. observability is determined by matrix [C, CA, CA2, 
CA3]T, which means there exists a unique output during a finite 
period for every initial condition. In this paper, the system is 
observable with a full rank. Therefore, the Luenberger state-
observer expression is thus given by 
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where state correction matrix 𝐋𝐮(𝑦(𝑡) − 𝑦 ̂(𝑡))  illustrates the 
relationship between measured and estimated terms and Lu is a 
4×4 matrix as Eq. (9). The 2×2 square matrix in the upper left 
corner Lupr and lower right corner Luse are respectively the gain 
matrix for primary machine and secondary machine. 
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The above gain reflects the dynamic vibrations of the 
Luenberger observer. With Eq. (7) and Eq. (8), the complete 
expression of Luenberger observer is given by 

[ ] ( ) ( ) ( ) ( ) ( )          (10)x t x t u t t y t= − + + +A LuC B De Lu
  

where u is the input of the observer, y is the output of original 
model in Eq. (7). De can be treated as the disturbances owing to 
fluxes of machine.  
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3.2. FDD method based on designed Luenberger observer  
Main design for a Luenberger observer is given in section 3.1 
and 3.2. After these preparations, here a current form factor is 
introduced for the needs of FDD. The overall diagram of the 
FDD method is shown in Fig. 4. 
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Fig. 3. Diagram of Luenberger based FDD method. 

To obtain current form factors (CFFs), measured current and 
estimated current are given by 
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The RMS value reflects the variation of distance for phase 
currents from their corresponding average values, and is 
sensitive by deviations from the unrectified average values, such 
as in faulty conditions. Thus, here CFFs are utilized for fault 
detections. 

For each phase, a residual is generated and expressed as 
_ _( ) ( ) ( )cff xx cff xt i t i tr −=                            (12) 

Then the adaptive threshold is build up with the following 
equation: 
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where ex is the observer error given by 
( ) ( ) ( )xx xe t i t i t= −                             (14) 

Then the above residuals can be organized as: 
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Finally, the adaptive threshold can be expressed by 
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where η is the gain coefficient to tune appropriate thresholds in 
practice to enhance efficiency of fault detection. 

After that, average current values ix_av are selected associated 
with faulty legs to achieve accurate fault localizations. In 
addition, a threshold Th0 is defined for fault localizations. 
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3.3. Selecting gain of Luenberger observer 
Gain of Luenberger observer has an effect on the estimating 

errors, which directly influence the performance of FDD. Here 
a pole placement method is thus given. Illustrations of 
detectability are carried out by sensitivity analysis. 

3.3.1. Performance analysis by pole placement 
The observer error is supposed to be calculated by the 

eigenvalues of (A-LuC) and placed at the left half s-plane. 
Importantly, these eigenvalues should meet the demands of fast 
response and accurate current estimation for the five-phase 
PMSG power conversion system. The calculation is derived by 
the subspace of primary machine and secondary machine as 
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Eq. (18) can be thus solved into Eq. (19). The observer 
eigenvalues can be figured out by Eq. (20). 

A standard form of second order characteristic equation and 
its eigenvalues are given by 
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where ωn, ωd, ζ and σ are respectively undamped natural 
frequency, damped natural frequency, damping ratio and decay 
rate. Further in Fig. 3, the geometric relationships of them can 
be plotted in a complex s-plane by their eigenvalues. Here ωn 
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represents the distance from the origin to complex conjugate 
roots. According to the principles of root locus analysis, the real 
parts of the eigenvalues of Eq. (20) decides the converging speed 
of Luenberger observer errors. That is, greater negative real parts 
of the eigenvalues contribute higher stability and faster dynamic 
response. Conversely, system will perform worse stability and 
slower dynamic response when the eigenvalues are close to 
imaginary axis. However, a too large negative real parts of the 
eigenvalues results in more sensitive to the noises and even 
breaks the stability of system. 
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Fig. 4. Diagram of eigenvalues in a complex s-plane 

The dynamic performance of observers in Eq. (8) is related to 
the real parts of the eigenvalues, which is more concerned to 
obtain fast fault detecting performance in transient states instead 
of the stability issues. And the dynamic response is related to the 
eigenvalues while they are affected by the gains Lupr1, Lupr2, 
Luse1 and Luse2. Here denotes Ppr1, Ppr2 and Pse1, Pse2 are 
respectively the poles of the system. In addition, to improve 
dynamic performance of the observer, the eigenvalues of 
Luenberger observer should be a little more negative than the 
dominant system poles. Placement of observer poles is limited 
by considering the inferences noise and dominant system poles. 

3.3.2. Sensitivity anaylsis 
As a result, a sensitivity analysis should be done to evaluate 

the detectability of the residuals as faults or uncertainties (e.g. 
noises) are introduced. Considering the effects by fault signal f 
and noise δ, here two sensitivity ratios are defined as 
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As the above expressions, SRfx is supposed to be as large as 
possible when tuning Luenberger observer gain Lu to fit the 
observer for healthy and faulty conditions. Conversely, SRnx 
should be as low as possible for the thinking of anti-noise 
interference. That is, magtitude of noises are much lower than 
Thf when the poles in Eq. (20) move towards negative infinity. 
Notice that noise signal conforms a Gaussian distribution as δ(t) 
~Ν(0, Rc) and normalized as residuals, where Rc is the variation 
of δ(t). Obviously, SRfx and SRnx will respectively reduce and 
increase as the observer gain Lu increases. The problem of 
determining various observer gain Lu is transformed into 
trading off between SRfx and SRnx within their boundaries. 

4. SIMULATION ANALYSIS 
Considering tidal current profiles process a feature of long 

period over time. In a short period (e.g. one day), the tidal current 
velocity can be regarded as a constant value. Hence, simulation 
validations are carried out under a constant rated tidal speed and 
SNR=60dB. By using MATLAB/SIMULINK, the overall 
simulation platform is depicted in Fig. 5. In addition, Table 1 
lists the main parameters of the platform. 
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Vtidal MPPT
ωm_ref +- Vdc
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Phase 
currents

Luenberger 
observer-based FDD

+
AC/DC

5-legs

RLC 
load

Generator side Controller  
Fig. 5. Brief simulation block diagram. 

Table 1. Main paramerters of the simulation platform 

Symbol Description Value 
Pm Generator rated power 1.5 MW 

Vdc DC-bus rated voltage 1700 V 

npp Number of pole pairs  120 

Φ1, Φ3

Primary and secondary 
machines’ magnet flux  2.458, 0.082 Wb 

Rs Stator resistance 0.0081 Ω 

Lpr, Lse

Primary and secondary 
machines’ inductances  0.4, 0.088mH 

fpwm PWM switching frequency  5kHz 

Lu Gain of Luenberger observer 5×105 

ωs SOGI’ resonant frequency 5kHz 

th0 Boundary of null zone 0.01 

thf Threshold for fault detection 7×107 

4.1. Fault detection and diagnosis performance  
Open phase fault and open switch fault will be discussed in 

this part respectively. Open switch fault (OSF) at the switch S1, 
S6 and open phase fault (OPF) in phase ‘a’ are respectively in 
Fig. 6 to Fig. 8. For all the presented cases, input mechanical 
torque varies from rated torque to 2/3 rated torque at 0.04s and 
the faults occur at 0.07s for OSF and 0.06s for OPF. For phase 
current ia(t), observer error ra will be exceed the threshold Tfa 
when fault occurs. It can be observed that the fault indications 
from CFFs residuals rx are the same from Fig. 6 and Fig. 8, which 
means no distinguishing capability by the CFFs residuals but 
great robustness of torque variations. Therefore, average phase 
current is accordingly used to complete the task of fault 
identifications. Overall, fault can be effectively detected for OSF 
and OPF within around 0.0035s. 

4.2. Dynamic performance 
According to Eq. (8), (13) and (16), the only different part 

with estimated and observed components is the iterative errors. 
Larger gains of observer (Lupr1, Lupr2, Luse1 and Luse2) will 
produce faster dynamic response in dynamic transient states. 
And the estimated current will be thus more close to the 
measured current. The threshold will decrease accordingly for 
fault detection, which makes the system more vulnerable to the 
occurrence of fault alarms. Therefore, the tradeoff of anti-



 

 

interference ability and dynamic response should be determined 
depending on the practical demands. For example, the following 
figure presents the threshold will decrease as gains of observer 
become higher. Theoretically, lower threshold will lead to 
higher chances of fault alarms. For ease of comparisons, here 
Lupr1, Lupr2, Luse1 and Luse2 are set as same values.  

As the illustrations from 0.04s to 0.06s in Fig. 10 (a) that S6 is 
open at 0.065s, average level of the sensitivity ratios in Eq. (23) 

during a continuous-time varying process are thus respectively 
presented in Fig. 10 (b) and (c). With the increasing of observer 
gains from 5e3 to 1e5, the detectability and estimation accuracy 
are improved but more vulnerable to noises. Additionally, noises 
will become dominant components with larger gains. Therefore, 
the observer gain should be limited with a certain range. In this 
paper, observer gains are set as 50000 after synthesizing above 
concerns. 

 
Fig. 6. Open switch fault (S1 is open at 0.07s) 

 
Fig. 7.  Open switch fault (S6 is open at 0.06s) 

 
 Fig. 8. Open phase fault (phase ‘a’ is open at 0.06s) 



 

 

 
Fig. 9. Detectable variables with various observer gains (e.g. in phase 
'a') 

 
(a) Phase current 

 
   (a) Sensitivity ratio of faults     (b) Sensitivity ratio for noises     (c) estimation accuracy 

Fig. 10. Detectability test in healthy and faulty conditions 

By relative positions of observer poles and dominant system 
poles, observer poles will definitely have a left shift by using the 
feedback gain Lu. Therefore, selection of gain Lu is supposed 
to concern synthetization of sensitivity ratios. 

 

5. CONCLUSIONS 
This paper focuses on a model-based FDD issue by a 

proposed Luenberger observer-based fault estimation method 
and its application to a tidal current energy system. This FDD 
scheme beneficiates to a processing procedure of estimating 
residuals incorporating current form factors. Fault localization is 
achieved by average phase current. Poles placement and 
sensitivity analysis allow to facilitate selections of proper 
observer gains of Luenberger observer in order to increase 
detectability and robustness of this method. Simulation results 
show that the FDD scheme works efficiently with satisfied 
robustness in continuous time process. In the future, the design 
of the observer is supposed to be implemented under variable 
tidal speed working conditions. 
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Fig. 11. Pole-zero map of the observer system with various gains 
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