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Abstract— The decentralization of energy generation and
transmission demand for the Internet of Energy with real-time
peer-to-peer energy exchange. The intermittent renewable
energy provides a challenge of consumption flexibility at
consumer side. Buildings are significant in this new context, since
they are the biggest energy consumer worldwide and can
contribute to local renewable energy production as well.
Therefore, proactive building services will be required in near
future in order to operate energy community. This paper deals
with energy flexibility obtained through PV production forecast
for a community. Decision tree technique is applied on historical
hourly data of 3 years for week-ahead forecast of building
consumption, photovoltaic production, and for fault detection
diagnostic. Feature engineering and energy expertise used to
obtain good forecasting performances are discussed. The
significance of these technics for prospective energy community
service is also discussed in the paper.

Keywords— machine learning, energy flexibility, random
forest, gradient boosting, auto-consumption,  building
consumption, PV forecast, energy communities.

I. BUILDINGS AS A PILLAR OF THE INTERNET OF ENERGY

Environmental policies and the reduction in production
cost of renewable energy are transforming the energy
landscape of cities and countries worldwide. The renewable
energy is decentralized and intermittent in nature and due to its
constraints, it modifies the role of transmission system
operator (TSO) and distribution system operator (DSO) while
connected to the energy grid. In this context, the role of DSO
is becoming increasingly significant to keep the balance of
energy flows for avoiding local congestion. In [1], the Center
on Regulation in Europe highlights different proposals for
DSO-TSO interactions that allow the trade of flexible services.

With the decentralization of energy network and
implementation of Internet of Energy (IoE), each node of the
energy network will be able to produce, consume and store
energy. These real-time peer-to-peer exchanges constitute 10E
revolution, and require a real paradigm shift in technological
solutions and energy regulation. Today, the operators of the
electrical networks are practically blind on the scale of the
districts and can only through demonstrators sketch the
potential of solutions to prepare the future [2]. IoE will rely on
net-metering to decide the dynamic electricity pricing; based
on the available energy storage (kWh) it will also depend on
the capacity (kW). Therefore, it accounts for strong time
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dependence. The complexity of pricing will no longer allow
optimal human decision-making, rather a set of third-party
players should be developed to implement advising and
controlling services.

IoE is not only made up of smart grids; it is also comprised
of the actors at each node of these grids. For instance, energy
management at a local level should aim for a multi-objective
optimum integrating economic constraints, environmental
issues, and citizen choices. Self-consumption is a good way to
involve consumers in energy system and to play on levers that
the economic aspects could not reach. It permits to reduce
transmission loss (8% on average), reduces the infrastructure
investments and motivates the increase in consumption,
particularly in cities. Legislation on collective self-
consumption is already in place in some countries like France
[3], which encourages the citizens to play an active role in IoE.
They can thus collectively produce and consume their own
energy. However, it is required that these solutions that are
promoting the penetration of renewable energies must be
complemented by the services for operators and consumers
(i.e. the occupants of buildings).

Residential and commercial buildings are the biggest
energy consumer worldwide; mainly for their needs related to
thermal comfort. They consumed more than 37% of final
energy in OECD countries in 2017 on par with transport (37%)
and ahead of industry (25 %) [4]. In perspective of
decentralized production in proximity of load centre, energy
production could be very strongly developed on these
buildings in the coming years. The French Environment and
Energy Management Agency (ADEME) proposed a scenario
for a 100% renewable mix across France in 2050; where 34%
of the capacity would be generated by photovoltaic panels on
the rooftop of the buildings [5]. According to this report,
buildings flexibility will help up to 18% for managing the
network balance of 100GW peak demand, essentially from
heating, ventilation, air conditioning (HVAC) (14GW) and hot
water tank (4GW).

Buildings are therefore essential in the energy transition
[6]. However, they must be able to communicate with each
other and offer services to network operators or at the level of
energy communities.
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Il. MACHINE LEARNING FOR BUILDING ENERGY SERVICES

As mentioned above, buildings must offer flexibility to
ensure optimum energy management. Two such tools that
might already be implemented in buildings are as follows:

e Optimization of the energy bill: by proposing an
adaptive contract, based on the analysis of past data and
long-term forecasts. This helps in notifying the
consumer to avoid upcoming over-consumption
through load shedding and hence to avoid financial
penalties.

o Fault detection diagnosis and maintenance: it allows to
detect a variation in the measurement compared to a
baseline, indicating a potential malfunction.

In this paper, we will try to go further by expressing the
needs for the implementation of new service tools for energy
communities. The tools presented below may rely on the same
technics already used for optimizing the energy bill or for
diagnosis of a consumer, yet they need to be adapted for an
energy community.

e Optimizing collective self-consumption: ensuring a
balance between production and consumption at the
community level through promoting the penetration of
renewable energies.

o Energy flexibility: each building offers the means of
quantifying the potential flexibility and activating
negotiations for flexible actions to the community.

Predicted models must be deployed in order to make these
services work. An approach is to develop physical models
often resulting from specialized expertise and in-depth
knowledge of the system to be modelled [7].

Another way is to model physical system using artificial
intelligence (Al). Al is now a thriving technology driven by
the convergence of deep learning, and planetary-scale data. Its
impact on human society is expected to be on a scale
comparable to electricity. During 1975-1990, artificial neural
network improved its performance by two innovations: multi-
layer perceptrons with soft decision surface and learning with
back-propagation. However, since 2012, deep learning (DL)
has been found effective to provide reliable solutions for
longstanding problems [8]. Long short term memory (LSTM)
is a recurrent neural network (RNN) dedicated to time series
modelling which is able to catch different dynamics of the
signal. This deep learning technique has been successfully
applied for building hourly consumption prediction [9].
Support vector machine (SVM) is another machine-learning
algorithm, which can be applied to predict building energy
consumption [10]. Both of these technics are complex; notably
with hyper-parameters to tune, with long time to train, and
difficult to interpret. In this paper, we used a machine learning
method based on decision trees, which has the advantage of
being quick to calculate and easily interpretable.

The three most common barriers to Al are: (1) insufficient
labeled data for learning, (2) insufficient computing power and
(3) prohibitive cost of encoding domain knowledge. The
barrier (2) is not addressed in this paper, but we are going to
discuss on data availability and the link between domain-
specific expertise which are required to build efficient Al.

To implement the proposed building services, it is required
to create a forecasting model. The classical horizon for model

predictive control is a day-ahead forecast, while in order to
provide other kind of services for energy planning including
human decision-making, we will study in the following section
a week forecast modelling. Therefore, sufficient and reliable
historical data is required to make a supervised learning model
with the characteristics as follows.

o Data Length: it can be important to capture short term
as well as long term dynamics, like the annual
seasonality.

e Sampling Frequency: the choice of sampling frequency
is according to the model requirement and the memory
constraint of hardware. Any fine sampling which can
be down-sampled for annual history is helpful in this
regard.

e Data Quality: it is common to have missing data or
outliers. In the case of missing data, an interpolation
during the pre-treatment phase is helpful for a time
series data, whereas certain technics can be used to
detect and remove the outliers.

e Data Quantity and Diversity: a diverse and big data
brings more choices of feature selection according to
the needs of the predictive model. The features can be
sorted according to the best correlations among the
parameters.

To illustrate this, we are modelling consumption of the
GreEn-ER building [6], a 22,000 m2 service building,
accommodating 2,000 occupants, and massively monitored
and controlled for energy efficiency. It has around 1500
connected sensors. The consumption of the building is mainly
driven by the thermal comfort of the occupants and air quality.
The historical consumption of a period of 3 years (from 2017
to 2019) is used for modelling. For the purpose of training the
model, we will use the data of 2 years, while the last year will
be used for model validation.

I11. CONSUMPTION FORECAST AND FEATURE ENGINEERING

The first task of a modelling is the definition and selection
of the features from the raw data (also called feature
engineering). Features are the inputs of the prediction model.
There are two categories of features to be selected for making
a predictive model of the consumption of GreEn-ER. The first
category of features is based on the historical raw data.
Specifically, these are Date Time Features, Lag Features and
Windows Features. A second category of features are the
exogenous variables, which are correlated to the variable to
predict. We briefly discuss these features by illustrating on the
building consumption prediction.

A. Date Time Features

The Date Time features correspond to properties linked to
the instants of the observations. For instance, the time of day
helps to model the daily frequency and therefore helps to
model daily events such as the automatic start of heating at 6
a.m., the arrival of staff at the office at 8 a.m., the lunch break
etc. The day of week makes it possible to model working days
and weekends. The day of year allows to take into account the
seasons and holidays.

The well-known objective of machine learning is to adjust
the bias-variance compromise in order to have a model which
generalizes well the behaviour of the data, and which therefore
leads to a robust prediction. For this, we need a model that



reduces the bias but without leading to over-fitting (i.e.
decision tree), and at the same time it ensures the smallest
possible variance in the data without leading to under-fitting.
To solve the problem of bias-variance, we can adopt an
ensemble approach, that cuts training data into a set of smaller
data sets (bootstrapping), performs several learnings and
returns the average. This technique is known as Random
Forest (RF) [12]. RF has been compared in [13] with neural
network for HVAC hourly consumption forecast, and the
authors claim that for comparable performance, RF is easier to
use. It has been used for automated measurement and
verification before and after a retrofit (pre-retrofit and post-
retrofit data) and to predict how much energy the retrofit saved
[14]. RF has been also used for building consumption anomaly
detection [15].

Comparing to conventional time series prediction methods
such as SARIMA (Seasonal Auto-Regressive Integral Moving
Average), learning methods based on RF show better
performance if features are well studied [16].

The regression model defined with 100 estimators, takes
only 4 seconds to be trained on a desktop computer for a
historical data of 2 years at 1 hour sampling time, with 5
features. This makes a total of 87,600 entries in the historical
data.

Fig. 1 shows the actual and predicted load curves for the
building. The hourly mean error calculated for the whole year
2019 is 90kWh, which renders the model appropriate. Fig. 2
shows the features importance obtained after model training.
The Day of Year feature explains half of the behaviour of the
consumption, while Hour of Day is second important feature
with 30% importance.
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Fig. 1. One-week prediction using Random Forest, based on Date Time
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Fig. 2. Date Time Features importance for consumption forecast

B. Lag Features

Lag features appear particularly for time series. They
introduce the dependence of the current value on the past
values. The downside of this feature is that it cannot be
predicted, so the model prediction horizon becomes limited
very quickly. If a 1 step lag shift is made and a model is trained
on that feature, the model will be able to forecast 1 step ahead
having observed current state of the series. So, during the
initial lag selection, a balance between the optimal prediction
quality and the length of forecasting horizon has to be found.

It can be observed by looking at the autocorrelation of the
consumption data (Fig. 3) that a consumption value at a certain
hour has a strong dependence on the previous hour (h-1) or the
previous few hours (h-n, where n is number of hours), then a
dependence on the consumption of the previous day at the
same time (h-24). The consumption value at a certain hour also
has a strong dependence on consumption at the same time in
the previous week (h-168).

0.8 1 h-168 Lag ”
5 0.6 1
=
2
S 0.4
]
3
<C
0.2
0.0

120 144 168 192 216
Lag

0 24 48 72 9%
Fig. 3. Autocorrelation function of consumption time serie, hourly steps

The lag feature is very significant for the training of the
model. It explains 65% of the prediction and then considerably
reduces the dependency on the others. It implicitly includes
information already present such as the Hour of Day or Day of
Week. The result of the model is over-fitting, which leads to a
poorer generalization of the model. Nevertheless, the
integrated result for the year 2019 is improved by 16% with an
average error of 75kWh compared to 90kWh previously.

C. Windows Features and Exogeneous Variables

Windows feature is a summary of values over a fixed
window of prior time steps. It can be for example the energy
consumed the day before or the previous week (sum or average
value), or the minimum and maximum values. The question
that often arises concerns the optimal size of the sliding
window. We can apply this technique to the series to be
predicted directly, but for a week-ahead forecast, we must
therefore look for statistical quantities of the week before.

We can also introduce exogenous features, i.e. signals
correlated to the consumption, in particular the outdoor
temperature. We can therefore apply window feature on this
variable to obtain the average daily temperature. The
prediction of this variable is relatively easy to access by
weather forecast APIs like OpenWeather!. Fig. 4 shows
temperature and consumption for the 4 seasons (spring,
summer, autumn and winter).

1 https://openweathermap.org
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Fig. 4. Pair plot and density distribution of consumption and temperature.

After training a model with windows features, the new
feature explains more than 25% of the prediction. The
improvement compared to the reference is 12% with an
average error of 79kWh compared to 90kWh for the reference.

Finally, if we use the two previous features (Lag h-168 and
outdoor mean temperature) in combination with the windows
feature, the total improvement is 39% with an average error of
65kWh integrated over the year 2019. The weekly energy
calculated from this last model, is integrated over the year and
gives a value of 2215 MWh, compared to 2071 MWh in
reality, which is 7% error.

In this model, the lag feature (h-168) has the highest
importance with 60%, while with mean outdoor temperature,
it is 16%, with Day of Year, it is 11%, with Hour of Day it is
8%, with Day of Week it is 3%, with Year it is 1% and with
Holiday it is nearly 0% for the whole year. Though the last
feature is insignificant, it is still important for some days like
in Fig. 5 (8" May: Holiday in commemoration of 2" world war
armistice in 1945).
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Fig. 5. Week prediction where a holiday is well forecasted even with nearly
zero importance for holidays features.

TABLE I. SUMMARY OF FEATURE SELECTION IMPROVEMENTS
Refer Lag (h-168) Outdoor mean Both
ence Temperature

MAE (kWh) 90 75 79 65
Improvement (%) - 16 12 39

& Mean Absolute Error of Energy per hour

Other important features can be directly found by physical
expertise of the system. In addition to the outdoor temperature
forecast, it would be interesting to provide the indoor set-point
temperature as a feature for forecasting. This may, varies
according to the modes programmed in the BMS (Building
Management System). Additional heat gain (through the
occupation of the building and the radiative contributions by
the glazing) is also very important in modern well-insulated
buildings, so it is desirable to have a prediction.

IV. PHOTOVOLTAIC PRODUCTION FORECAST AND HYBRID
DATA/PHYISCAL MODELLING

New energy services for energy management and
flexibility in the local energy community require energy
production forecast.

There are many photovoltaic production prediction
models, owing to the different prediction horizons: ultra-short-
term forecasting (a few minutes to 1 hour ahead), short-term
forecasting (1 hour to several hours ahead), medium-term
forecasting (several hours to 1 week ahead), and long-term
forecasting (1 week to 1 year or more ahead), but also for
different spatial scales (local or regional). For example,
methods for micro-grids control using cameras will be on a
local scale, in order to produce ultra-short-term forecasting
[17]. A quite common time scale concerns day-ahead
photovoltaic forecasting. A. Nespoli present in its recent paper
[18] a comparison of most effective technics.

For larger horizons, we often face a strong uncertainty that
local weather models seek to resolve. In [20], we developed a
heuristic approach based on a prediction of nebulosity to
obtain Direct Normal Irradiance (DNI) and Global Horizontal
Irradiance (GHI) which are necessary for PV model. We
propose here to use two specific features to train DNI, a
physical model providing clear sky DNI as well as nebulosity
prediction data provided by the APIs from Météo-France
(AROME open data [19]). Then the same can be done for GHI
in order to obtain PV production forecast.

We proceed as for consumption to a learning by RF with 200
estimators, which takes 3 seconds to train. Fig. 6 is showing
DNI for a week. RF prediction has an average error of
83.4 W/mz2, compared to 88.5 W/m? for the empirical model
developed in [20]. Fig. 7 shows that the clear-sky model is the
most important feature (34%), then Day of Year, Cloudiness
and finally Hour of Day. This complementarity between data
and physical model is one of the new challenges of cyber-

physical modeling in the coming years.
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To conclude this part, powerful predictive models are
easily achievable. The challenges are therefore now the
development of services such as self-consumption at the scale
of an energy community by exploiting these production and
consumption forecasts.

V. INTERVAL PREDICTION FOR FLEXIBILITY CAPACITY

Beside auto-consumption, flexibiliy is another challenge
for the energy communities. One of them can be the real time
evaluation of flexible capacity. It corresponds to the power that
can be shedded or over-consumed when the grid requires it to
improve the auto-consumption ratio. The capacity of
evaluation of flexibility is difficult, as it strongly depends on
variation of normal comfort level among the occupants. In
[21], [22] we have used physical based models in order to
evaluate flexibility potential of district buildings that are
heated and cooled by heat pumps. Here we are questioning
machine learning technics in order to provide the same kind of
information.

In addition, Fault Detection Diagnosis (FDD) allows real-
time detection of inconsistent behaviour by identifying
measures that would go beyond a standard range of variation.
For instance, FDD has been already developed by [23] using
Gaussian process regression.

We are applying on GreEn-ER consumption another
regression technique, which is close to Random Forest (RF).
Where RF manages the variance problem thanks to
bootstrapping, it does not manage at best the bias introduced
by the depth of the regression trees. A variant of RF called
Gradient Boosting (GB) helps to better manage the bias. While
RF generates random and independent trees in parallel, GB
works sequentially to create new trees depending on the
performance of the previous ones. In addition, optimization
uses the gradient to accelerate convergence.

In order to create the prediction boundaries, two models are
built. The first one uses 10% of the smallest data, and the
second one 10% of the largest data (90% quantile). To train
these models, we are using the same features as part 111, with
the outdoor temperature, but without the historical values (h-
168). The models use 200 estimators and a maximum tree
depth of 10. The 2 models are trained in 46 seconds.

To illustrate the FDD, Fig. 8 presents a measured
consumption (black) that goes out of limits (min: blue, max:
yellow) during the first week. Maintenance on the system is
then carried out and the data returns to a normal state for the
2" week. An important remark can then be raised here, if the
model takes too much account of the last measured values, like
with Lag features, this kind of deviation is more difficult to
identify. Indeed, the model will consider the anomalies as
normal values with time.
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Fig. 8. Fault Detection Diagnosis (FDD) using Gradient Boosting.

Does these intervals can help to evaluate the flexibility
capacity by giving possible variations of consumption while
keeping the building in a “normal” state ? To go further it will
be required to study indoor comfort such as temperature
modeling, but also put enough information on the data in order
to be able to simulate with machine learning model, the heating
or ventilation switch off consequences on the comfort.

CONCLUSIONS

In this work, we implemented different machine learning
technics for predicting the consumption of a building,
predicting photovoltaic production or even detecting faults.

We exploited the Random Forest (RF) and Gradient
Boosting (GB) technics that are based on a set of decision trees
offering good prediction performance in a short time and
compatible with a hardware implementation. In addition, they
offer good interpretability of results due to the possibility of
exploring the decision tree, and due to information regarding
the importance of feature. The feature engineering work was
more particularly highlighted, and shown the need to introduce
more exogenous features to implement richer correlations. An
expertise in the functioning of the system is then necessary, as
well as the provision of the richest possible data history with
allowing to make the best choices according to the needs.

We have also shown on photovoltaic production, that it can
be interesting to provide data from physical models (clear sky
model), and therefore that the approach by data is not
contradictory with a physical approach. Again, physical
expertise is needed to define the features. These consumption
and production prediction services must be the basis of future
services developed for the energy community in order, for
instance, to optimize the rate of self-consumption.

Finally, the prediction of intervals that can be used in FDD
is rich information on potential deviations in consumption and
gives a first approximation of the buildings flexibility
capacities.
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