Diagnostic des défauts d'un champ photovoltaïque par analyse statistique multivariée

PATRICK JUVET GNETCHEJO a, SALOMÉ NDJAKOMO ESSIANE a*,b, PIERRE ELE a

^a Laboratoire des technologies et sciences appliquées, Université de Douala, Cameroun ^b-Ecole normale supérieure d'enseignement technique d'Ebolowa, université de Yaoundé 1,Cameroun

patrijuvet@yahoo.fr, salomendjakomo@gmail.com, pierre_ele@yahoo.fr,

RESUME - Avec l'utilisation élevée des systèmes photovoltaïques, l'amélioration de leurs efficacités est devenue un sujet de recherche prioritaire de nos jours. De plus, les efforts remarquables déployés pour étudier différentes méthodes de diagnostic des pannes sur les systèmes photovoltaïques se sont multipliés pour donner un avantage supplémentaire aux recherches sur l'efficacité des systèmes PV. Dans cet article, une nouvelle approche basée sur l'analyse en composantes principales à noyau (ACPN) est proposée pour la détection et l'identification des défauts du côté DC d'un champ photovoltaïque. Le principe de l'ACPN est de projeter les données d'un espace réduit vers un autre espace de dimension plus élevée appelé espaces des caractéristiques. Dans cet espace des caractéristiques, deux tests d'indices : la statistique de Hotelling(T2), et l'indice SPE (Squared prediction error) sont appliqués pour la détection et l'identification du défaut. Les résultats obtenus montrent que l'ACPN est capable de détecter et d'identifier avec précision quatre états de fonctionnement d'un champ photovoltaïque (normale, string ouvert, court-circuit et ombrage partiel) pendant différentes conditions d'irradiation et de température.

Mots-clés :Photovoltaïque, Modélisation, Diagnostic des défauts, analyse en composante principale, test d'indice.

1. INTRODUCTION

La production d'électricité par voie solaire a explosé ces dernières années dans le monde[1]. Les installations photovoltaïques (PV) sont quittées de 89.5GW en 2012 à plus de 505 GW en 2018[2]. Cependant, les PVs peuvent être soumis durant leurs fonctionnements à différents défauts conduisant à une diminution de leurs performances, et voire même à l'indisponibilité totale de leurs services[3]. En effet, les systèmes PVs sont fréquemment exposés à différentes sources de défauts et de perturbations qui affectent la puissance générée par le système[4]. Ces défauts sont principalement dus aux interférences externes, à l'accumulation de poussière sur les modules PVs, au vieillissement des modules PVs, à l'ombrage.... Les pannes du côté DC des systèmes PVs sont souvent difficiles à éviter et peuvent entrainer une perte d'énergie, un arrêt du système ou même des problèmes de

sécurité graves[5]. Il a été rapporté que la perte d'énergie annuelle des PVs due à l'ombrage partiel est d'environ 10-20%[6]. Par conséquent, une stratégie précise et rapide de détection et de diagnostic des défaillances est nécessaire pour non seulement améliorer l'efficacité du système, mais aussi les coûts d'entretien élevés et réduire les risques d'incendie. Mais, maintenir un système PV en douceur et en toute sécurité et générer la puissance désirée reste un défi majeur dans les systèmes photovoltaïques raccordés au réseau[7]. Plusieurs techniques ont été proposées dans la littérature pour la détection des défauts dans un champ PV. Nous pouvons citer entre autres: les méthodes basées sur les caractéristiques, les méthodes basées sur les seuils[8], l'intelligence artificielle[9], les méthodes hybrides[10].

La réduction des coûts en utilisant un nombre minimum de capteurs a été prise en compte par Gokmen (2013) [8] pour détecter le nombre de modules en circuit ouvert et en courtcircuit, puis différencier ceux partiellement ombragés. Le diagnostic repose sur la surveillance de la tension du réseau et la comparaison avec des données personnalisées. Cependant, pour différentes installations de système PV et différentes conditions ambiantes, différents ensembles de données à entrainer sont nécessaires, ce qui est lourd à préparer. Wang et al (2016)[11] ont utilisés la PSO (particle swarm optimization) pour l'identification des paramètres et la détection des défauts par l'analyse de la modification des paramètres extraits du PV. Les avantages de cette méthode sont : le diagnostic se fait en ligne sans interruption du système, le système de détection pourra être introduit aux PVs lors de leur fabrication et l'algorithme utilise le MPPT, ce qui identifiera le moindre changement de puissance. Cette technique présente des inconvénients tels que : le coût (étant donné que le système sera intégré sur chaque PV), l'identification du défaut et la fiabilité du système. Hazra et al (2017)[12] utilise des algorithmes métaheuristiques (AG ,TS,GWO) pour détecter , localiser et identifier les défauts de court-circuit et de circuit ouvert dans un champ PV. L'algorithme suit le courant dans la chaine PV en prenant en compte le rayonnement solaire et la température ambiante. Les avantages de cette technique sont : le coût réduit

du système de détection, la localisation et l'identification du défaut sur le PV concerné. Mais l'algorithme reste limité à seulement deux types de défauts. Mahmoud (2018) [9] a proposé un nouvel algorithme de détection des défauts des systèmes PVs basés sur des réseaux de neurones artificiels (ANN) et une interface de système de logique floue. L'algorithme de détection de défaut est basé sur l'analyse de la tension et de la puissance. Les avantages de cette méthode sont : la détection, la localisation et l'identification du défaut concerné, la détection du défaut au niveau du MPPT. Fadhel et al (2019) proposent une méthode simple et robuste basée sur l'analyse en composante principale (ACP) pour détecter les défauts d'ombrage dans un champ photovoltaïque.

La plupart de ces techniques proposées présentent des inconvénients tels que : le coût élevé du nombre de capteurs utilisés, la nécessité d'un grand nombre de données pour la préparation du modèle, le temps nécessaire pour l'entrainement du réseau, la limitation du nombre de défauts pouvant être détectée... Dans cet article, une nouvelle approche simple et robuste, basée sur l'analyse en composantes principales à noyau (ACPN) est proposée pour la détection et l'identification des défauts du côté DC d'un champ photovoltaïque. Le principe de l'ACPN consiste à modifier les données en provenance des capteurs grâce à une application non linéaire pour ensuite les transposer vers un espace de dimension plus élevée appelé espace des caractéristiques. Dans ce nouvel espace, l'APC classique est appliquée et le diagnostic s'effectue grâce au test d'indices

Dans la seconde section de ce travail, nous présenterons le modèle d'une cellule PV et d'un champ PV; l'ACPN et le principe de détection seront présentés à la troisième section; la quatrième section portera sur l'application de l'ACPN pour le diagnostic des différents défauts dans un champ PV et la cinquième section sera la conclusion.

2. MODELISATION DU CHAMP PHOTOVOLTAIQUE

Pour évaluer le fonctionnement d'un panneau photovoltaïque, un model précis doit être mis en œuvre afin de prédire avec exactitude le fonctionnement normal du PV[13].

2.1. Model d'une cellule PV

Le modèle le plus utilisé dans la littérature pour représenter une cellule photovoltaïque est celui à une diode[1] (voir Figure 1)

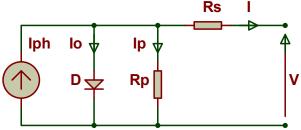


Fig. 1.: Circuit electrique du model à une diode d'une cellule PV

Le courant de sortie de la cellule exprimé à partir des lois de Kirchhoff donne la relation suivante :

$$I = I_{ph} - I_0 \left[\exp\left(\frac{q\left(V + I.R_s\right)}{n.K.T}\right) - 1 \right] - \frac{V + I.R_s}{R_p}$$
Où:

I est le courant de sortie [A], V la tension de la cellule [V], I_{ph} le photocourant[A], I_0 le courant de saturation de la diode [μ A], n le facteur d'idéalité de la diode, R_s la résistance série [Ω], R_p la résistance parallèle [Ω], K la constante de Boltzmann [J/K], T la Température [K] et q la charge de l'électron [C]. L'ensemble $\theta = \begin{bmatrix} I_{ph}, I_0, n, R_s, R_p \end{bmatrix}$ sont les paramètres intrinsèques du PV à déterminer [14]. Dans la littérature, plusieurs méthodes ont été proposées pour la détermination de ces paramètres[1], [13].

2.2. Modélisation d'un champ photovoltaique

Un panneau photovoltaïque est constitué d'un ensemble de cellules photovoltaïques. Dans un panneau photovoltaïque, toutes les cellules sont uniformes : ce qui implique l'uniformité des courants et des tensions pour chaque cellule du panneau. Un champ PV est à son tour constitué de plusieurs modules connectés en série et en parallèle. Ainsi le modèle de la cellule peut directement être applicable sur un panneau PV comme le montre l'équation 2.

$$I = N_{p} I_{ph} - N_{p} I_{0} \left[\exp \left(\frac{q \left(V + (N_{s} / N_{p}) R_{s} I \right)}{N s n K T} \right) - 1 \right] - \frac{V + (N_{s} / N_{p}) R_{s} I}{\left(N_{s} / N_{p} \right) R_{p}}$$
(2)

Où Ns et Np sont respectivement le nombre de cellules connectées en séries et en parallèles. En considérant le cas d'un champ PV, l'équation (2) peut être exprimée en fonction des éléments du tableau 1 : ce qui nous donne l'équation du modèle d'un champ PV exprimée par l'équation (3).

$$I = I_{ph}' - I_0' \left[\exp \left(\frac{q(V + I.R_s')}{n'.K.T} \right) - 1 \right] - \frac{V + I.R_s'}{R_p'}$$
 (3)

Tableau 1. Relation entre les paramètres d'une cellule et un champ PV

Paramètres de la cellule	Paramètres du champs PV
$N_p.I_{ph}$	I_{ph} '
$N_p.I_o$	I_o '
$N_s.n$	n'
$(N_s / N_p)R_s$	R_s '
$(N_s / N_p).R_p$	R_p '

3. DETECTION DES DEFAUTS PAR L'ACPN

3.1. Principe de l'ACPN

Le principe général de l'ACPN consiste à projeter les données d'un espace réduit vers un autre espace de dimension plus élevée appelé espace des caractéristiques en utilisant une fonction à noyau non linéaire[15], puis de calculer les valeurs et les vecteurs propres de la matrice du noyau dans le nouvel espace.

Soit une matrice de données $X = [x_1, x_2, x_3, ...x_N]$ constituée de N observations et m variables. Après avoir centrées et réduites les données $\hat{\boldsymbol{x}}_k$, une fonction non linéaire

 $\Phi(.)$ doit être utilisée pour projeter les données de l'espace non linéaire vers un espace linéaire F[16]. En supposant que la fonction : $\sum_{k=1}^{N} \Phi(\hat{x}_k) = 0$, l'ACPN doit retrouver l'ensemble des valeurs (λ) et vecteurs (ω) propres de la matrice de covariance (C^F) dans l'espace linéaire F à partir des équations suivantes :

$$C^{F} = \frac{1}{N} \sum_{k=1}^{N} \Phi(\hat{x}_{k}) \cdot \Phi(\hat{x}_{k})^{T}$$
(4)

$$C^F \omega = \lambda \omega \tag{5}$$

La fonction noyau est définie par :

$$K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)$$
(6)

Les nouvelles valeurs et vecteurs propres pourront être trouvés à partir de l'équation (7) :

$$N.\lambda.\alpha = K.\alpha$$
 (7)

Où α identifie le vecteur propre ω après normalisation. Les vecteurs propres identifiés dans l'espace caractéristique F peuvent être considérés comme les composants principales du noyau qui caractérisent le système[17]. Les détails sur l'ACPN peuvent être consultés dans les références[15] et[17].

3.2. Application de l'ACPN pour la detection des défauts.

Après construction du model ACPN, les nouvelles données obtenues sont projetées sur les espaces principales et résiduels où deux tests d'indices sont généralement utilisés pour la détection des défauts.

Le premier est celui de la statistique de Hotelling(T²) basée sur l'espace des composantes principales. Il est défini par :

$$T^{2} = \hat{t}^{T}(k)\Lambda_{l}^{-1}\hat{t}(k) = \sum_{i=1}^{l} \frac{t_{i}^{2}}{\lambda_{i}^{2}}$$
 (8)

Où Λ_l est la matrice diagonale des 1 premières valeurs propres. Un défaut est détecté lorsque l'indice est supérieur à la limite de confiance τ^2 définie par :

$$\tau^{2} = \frac{l(N+1)(N-1)}{N(N-l)} F_{l,(N-l)}$$
(9)

Avec $F_{l,(N-l)}$ la distribution de Fisher.

Le second indice SPE (Squared prediction error) basé sur l'espace des résidus est défini par :

$$SPE(k) = e^{T}(k).e(k)$$
(10)

Un défaut est détecté lorsque l'indice est supérieur à la limite de confiance δ^2

$$\delta^{2} = \theta_{1} \left[\frac{c_{\alpha} \sqrt{2\theta_{2} h_{0}^{2}}}{\theta_{1}} + 1 + \frac{\theta_{2} h_{0} (h_{0} - 1)}{\theta_{1}^{2}} \right]^{\frac{1}{h_{0}}}$$
(11)

Avec $\theta_i = \sum_{j=l+1}^m \lambda_j^i$ pour i = 1, 2, 3 et λ_j est la j^{eme} valeur

propre de la matrice de covariance, et

$$h_0 = 1 - \frac{2.\theta_1.\theta_3}{3.\theta_2^2} \text{ et } c_\alpha = \frac{\left[\left(\frac{\|e\|^2}{\theta_1} \right)^{h_0} - 1 - \frac{\theta_2.h_0(h_0 - 1)}{\theta_1} \right]}{\sqrt{2.\theta_2.h_0^2}}$$
(12)

4. APPLICATION DE L'ACPN POUR LA DETECTION DES DEFAUTS DANS UN CHAMP PV

Le principe de détection est basé sur l'analyse de la caractéristique courant tension (I-V) en fonctionnement normal. À partir des données réelles mesurées (température et irradiance), la caractéristique courant tension $([I_{est}, V_{est}])$ est estimée à partir des équations (3), (13), (14) et (15): ce qui constitue la base d'entrainement des données (fonctionnement normal).

La caractéristique réelle ($[I_{mes}, V_{mes}]$) du champ PV est mesurée à partir des capteurs de courant et de tension (voir figure 2). Les données réelles $[I_{mes}, V_{mes}]$ et celle estimées $[I_{est}, V_{est}]$ après être centrées et réduites sont toutes deux évaluées par l'ACPN et projetées dans un espace des caractéristiques de dimension élevée. Dans cet espace des caractéristiques, deux tests d'indices : la statistique de Hotelling(T^2) et l'indice SPE sont appliqués pour la détection et l'identification du défaut.

4.1. Modèle simulink du champ PV

Le système à étudier est constitué de six (6) panneaux photovoltaïques du modèle GL-M100 dont les spécifications techniques du module sont disponibles dans le tableau 2.

Tableau 2 : Spécification technique du panneau PV GL-M100

Paramètres	Valeur
Pmpp	100W
Voc	21.5 V
Isc	6.03 A
Vmpp	17.5 V
Impp	5.71 A
Coefficient de température de Isc $(lpha)$	0.06% /k
Coefficient de température de Voc ($oldsymbol{eta}$)	-78mV
Coefficient de température de Pmpp (γ)	-0.5%K
Nombre de cellules en série	36

Il est constitué de 2 strings en parallèle comportant chacun 3 PV en série comme le monde le schéma de la figure 2.

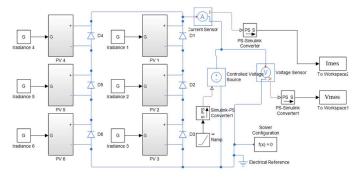


Fig. 2. Modèle Simulink du champ PV

Chaque PV est modélisé grâce au circuit de la figure 3 et les paramètres intrinsèques sont configurés tel qu'indiqué dans le tableau 1.

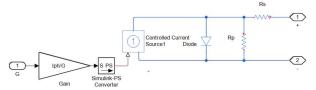


Fig.3. Modèle Simulink d'un panneau photovoltaique

Certains des cinq paramètres $\theta = \left[I_{ph}, I_0, n, R_s, R_p\right]$ dépendent fortement des conditions atmosphérique (la température et l'irradiation). Leurs relations doivent donc être exprimées en fonction de ces conditions. Les valeurs du modèle seront ajustées comme suit :

$$I_{ph}(G,T) = I_{ph0} \left[1 + TIPH1(T - T_0) \right] \frac{G}{G_0}$$
 (13)

$$I_o(T) = I_{o0} \left(\frac{T}{T_0}\right)^{3/n} \exp\left(\frac{q.E_g}{nkT_0} - \frac{q.E_g}{nkT}\right)$$
 (14)

$$n(T) = n_0 [1 + \gamma (T - T_0)] \tag{15}$$

Avec

$$E_g = 1.16 - 7.02 \times 10^{-4} \times \frac{T^2}{T - 1108}$$
 (16)

Ωù

TIPH1 est le coefficient de température du photocourant ; G l'irradiation , T la température ; G_0 et T_0 sont respectivement l'irradiation et la température dans les conditions de fonctionnement standard $\left(G_0=1000w/m^2;T_0=25^oC\right)$; $\theta_0=\left[I_{ph0},I_{o0},n_0,R_{s0},R_{p0}\right] \quad \text{sont} \quad \text{des} \quad \text{paramètres} \quad \text{en} \quad \text{fonctionnement standard qui peuvent être obtenus par plusieurs méthodes disponibles dans la littérature[1], [13].}$

4.2. Expérimentation

Pour l'étude expérimentale, le schéma de la figure 3 réalisé dans la plateforme Matlab/Simulink a été utilisé pour recueillir les données de la caractéristiques courant-tension $([I_{mes}, V_{mes}])$.

Pour ce faire, quatre étapes de simulation ont été effectuées :

- 1 ere étape : fonctionnement normal

2^{ième} étape : circuit ouvert
 3^{ième} étape : court-circuit

- 4^{ième} étape : ombrage partiel

Les courbes de la figure 4 présentent les 4 états de fonctionnement de notre système

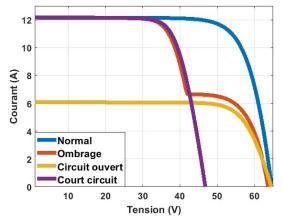


Fig. 4. Caractéristique I-V des differents états de fonctionnement.

4.3. Résultats

10⁶

La figure 5 présente les caractéristiques I-V en fonctionnement normal du système. Dans ce type de fonctionnement, les données $\left(\left[\mathbf{I}_{est},V_{est}\right]\right)$ estimées représentées en bleu coı̈ncident avec celles mesurées $\left(\left[\mathbf{I}_{mes},V_{mes}\right]\right)$ représentées en rose.

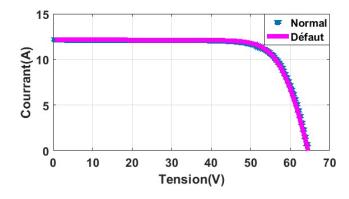


Fig. 5. Caractéristique I-V du système en fonctionnement normale

Les courbes d'indices et de seuils en fonctionnement normal sont représentées à la figure 6. Ces deux courbes d'indices (estimées et Mesurées) sont superposées et inférieures à la limite (en rouge) : ce qui montre l'absence de défaut.

Fonct norma

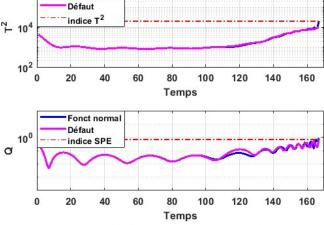


Fig. 6. Test d'indices en fonctionnement normal

La Figure 7 met en évidence la caractéristique I-V lorsqu'un PV est partiellement ombragé. On peut observer la déformation de la courbe originale qui est principalement due à l'activation des diodes placées en parallèle avec les PVs concernés.

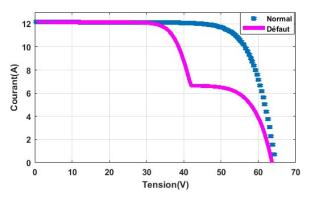


Fig.7. Caractéristique I-V du système lorsqu'un PV est partiellement ombragé.

Les courbes d'indices et de seuils du fonctionnement normal et défectueux sont représentées à la figure 8. Nous pouvons observer entre les instants [80 et 140], une dissimilarité entre les données mesurées et celle estimées. On observe également que le seuil d'indice SPE a été franchi durant cet intervalle : ce qui signale la présence du défaut.

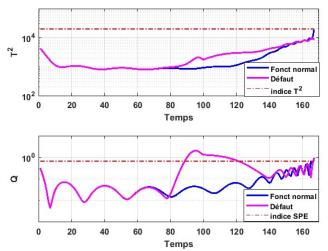


Fig.8. Test d'indices dans le cas de l'ombrage partielle.

La Figure 9 présente l'état du système lorsqu'un PV est en court-circuit. On note une diminution de la tension en circuit ouvert, ce qui traduira également une baisse de la puissance totale du système.

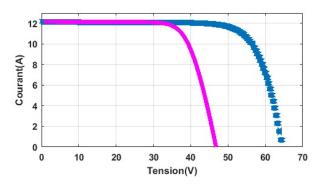


Fig. 9. Caractéristique I-V du système lorsqu'un PV est en court-circuit.

Sur les courbes d'indices et de seuils de la figure 10, on observe une dissimilarité entre les données mesurées et celles estimées à partir de l'instant 80. Cette dissimilarité conduit au débordement des seuils d'indices SPE et T² aux instants 90 et 110 respectivement.

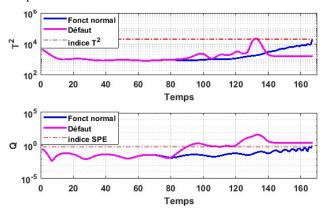


Figure 10. Test d'indices dans le cas d'un court-circuit.

La caractéristique I-V du système lorsqu'un PV est ouvert est illustrée à la figure 11. On peut observer une diminution considérable du courant de court-circuit et également une légère diminution de la pente ; ce qui conduit à une réduction de la puissance.

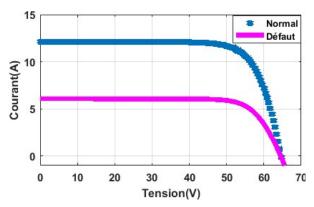


Fig.11. Caractéristique I-V du système lorsqu'un PV est ouvert.

On remarque une dissimilarité sur la courbe d'indice T sur l'emsemble des données (figure 12): ce qui s'explique par la dimunition du courant de court-circuit et la pente de la caratéristique. L'indice SPE quant à lui connaît un débordement à partir de l'instant initial jusqu'à l'instant 120 qui représente le début de la pente.

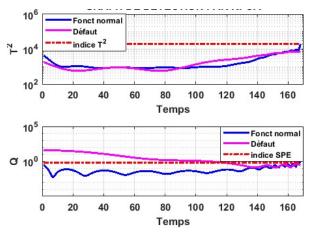


Fig. 12. Test d'indices dans le cas d'un circuit ouvert.

5. CONCLUSION

Dans cet article, l'analyse en composante principale à noyau (ACPN) appliquée sur les données de la caractéristique courant tension des panneaux photovoltaïques a été utilisée pour le diagnostic d'un champ PV en fonctionnement normal et défectueux. Grâce aux deux tests d'indices à savoir la statistique de Hotelling(T²) et l'indice SPE (Squared prediction error), nous avons pu identifier quatre états de fonctionnement du système (fonctionnement normale, PV partiellement ombragé, PV en court-circuit et circuit ouvert). Les résultats obtenus montrent l'efficacité de la méthode pour l'identification des défauts dans un champ PV. Avec le développement des nouveaux systèmes d'enrégistrement des données de la caractéristique I-V, et vue la simplicité de l'algorithme de détection, la méthode proposée pourra facilement être implémentée sur des simples microcontrôleurs.

6. RÉFÉRENCES

- [1] P. J. Gnetchejo, S. N. Essiane, P. Ele, R. Wamkeue, D. M. Wapet, and S. P. Ngoffe, "Enhanced Vibrating Particles System Algorithm for Parameters Estimation of Photovoltaic System," *JPEE*, vol. 07, no. 08, pp. 1–26, 2019, doi: 10.4236/jpee.2019.78001.
- [2] "Photovoltaic power systems technology collaboration." A Snapshot of Global PV, 2018.
- [3] S. Das, A. Hazra, and M. Basu, "Metaheuristic optimization based fault diagnosis strategy for solar photovoltaic systems under non-uniform irradiance," *Renewable Energy*, vol. 118, pp. 452–467, Apr. 2018, doi: 10.1016/j.renene.2017.10.053.
- [4] F. Harrou, Y. Sun, B. Taghezouit, A. Saidi, and M.-E. Hamlati, "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," *Renewable Energy*, vol. 116, pp. 22–37, Feb. 2018, doi: 10.1016/j.renene.2017.09.048.
- [5] M. K. Alam, F. Khan, J. Johnson, and J. Flicker, "A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques," *IEEE J. Photovoltaics*, vol. 5, no. 3, pp. 982–997, May 2015, doi: 10.1109/JPHOTOV.2015.2397599.
- [6] S. R. Madeti and S. N. Singh, "Monitoring system for photovoltaic plants: A review," *Renewable and Sustainable Energy Reviews*, vol. 67, pp. 1180–1207, Jan. 2017, doi: 10.1016/j.rser.2016.09.088.
- [7] F. Harrou, -Y. Sun, B. Taghezouit, A. Saidi, and M.-E. Hamlati, "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," *Renewable Energy*, vol. 116, pp. 22–37, Feb. 2018, doi: 10.1016/j.renene.2017.09.048.
- [8] N. Gokmen, E. Karatepe, S. Silvestre, B. Celik, and P. Ortega, "An efficient fault diagnosis method for PV systems based on operating voltage-window," *Energy Conversion and Management*, vol. 73, pp. 350–360, Sep. 2013, doi: 10.1016/j.enconman.2013.05.015.
- [9] M. Dhimish, V. Holmes, B. Mehrdadi, and M. Dales, "Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection," *Renewable Energy*, vol. 117, pp. 257–274, Mar. 2018, doi: 10.1016/j.renene.2017.10.066.

- [10] L. L. Jiang and D. L. Maskell, "Automatic fault detection and diagnosis for photovoltaic systems using combined artificial neural network and analytical based methods," in 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 2015, pp. 1–8, doi: 10.1109/IJCNN.2015.7280498.
- [11] W. Wang, A. C.-F. Liu, H. S.-H. Chung, R. W.-H. Lau, J. Zhang, and A. W.-L. Lo, "Fault Diagnosis of Photovoltaic Panels Using Dynamic Current-Voltage Characteristics," *IEEE Trans. Power Electron.*, vol. 31, no. 2, pp. 1588–1599, Feb. 2016, doi: 10.1109/TPEL.2015.2424079.
- [12] A. Hazra, S. Das, and M. Basu, "An efficient fault diagnosis method for PV systems following string current," *Journal of Cleaner Production*, vol. 154, pp. 220–232, Jun. 2017, doi: 10.1016/j.jclepro.2017.03.214.
- [13] P. J. Gnetchejo, S. Ndjakomo Essiane, P. Ele, R. Wamkeue, D. Mbadjoun Wapet, and S. Perabi Ngoffe, "Important notes on parameter estimation of solar photovoltaic cell," *Energy Conversion and Management*, vol. 197, p. 111870, Oct. 2019, doi: 10.1016/j.enconman.2019.111870.
- [14] P. J. Gnetchejo, S. Ndjakomo Essiane, P. Ele, R. Wamkeue, D. Mbadjoun Wapet, and S. Perabi Ngoffe, "Reply to comment on 'Important notes on parameter estimation of solar photovoltaic cell', by Gnetchejo et al. [Energy Conversion and Management, https://doi.org/10.1016/j.enconman.2019.111870.]," Energy Conversion and Management, vol. 201, p. 112132, Dec. 2019, doi: 10.1016/j.enconman.2019.112132.
- [15] K. A. Kwami, "Diagnostic de systèmes non linéaires par analyse en composantes principales à noyau," Université de Lorraine, 2019.
- [16] K. E. S. Pilario, Y. Cao, and M. Shafiee, "Mixed kernel canonical variate dissimilarity analysis for incipient fault monitoring in nonlinear dynamic processes," *Computers & Chemical Engineering*, vol. 123, pp. 143–154, Apr. 2019, doi: 10.1016/j.compchemeng.2018.12.027.
- [17] V. H. Nguyen and J.-C. Golinval, "Fault detection based on Kernel Principal Component Analysis," *Engineering Structures*, vol. 32, no. 11, pp. 3683–3691, Nov. 2010, doi: 10.1016/j.engstruct.2010.08.012.