
SYMPOSIUM DE GENIE ELECTRIQUE (SGE 2020), 30 JUIN - 2 JUILLET 2020, NANTES, FRANCE

Computer-Aided Measurement method of Hysteresis
Loop based on Convolution Neural Network

Ruohan Gong, Abdelkader Benabou, Zuqi Tang
Univ. Lille, Arts et Metiers Paris Tech, Centrale Lille, HEI, EA 2697

L2EP – Laboratoire d’Electrotechnique et d’Electronique de Puissance, F-59000 Lille, France

ABSTRACT – In this paper, a surrogate model base on deep
learning (DL) is proposed to predict the hysteresis loops of ferro-
magnetic materials. The databases of hysteresis loops were mea-
sured on the MPG200D Brockhaus equipment with an Epstein
frame. In order to reduce the experimental cost and accelerate
measurements, a surrogate model based on the convolutional neu-
ral network (CNN) is proposed. First, presenting the measurement
results in the form of 256× 256 × 1 images and extract the 6 most
characteristic parameters, namely peak magnetic flux density, fre-
quency, maximum magnetic field strength, remanence, coercivity,
and the area of the hysteresis loop. All these physical parameters
are taken as the label in the supervised DL process. These label
information are normalized to form a Gaussian distribution image
of 256× 256 × 3 as the input, and the corresponding B-H curve is
the output. Using image-to-image CNN U-net, once the network
is effectively trained, the hysteresis loops under other excitation
parameters can be predicted without further measurement. Our
numerical examples show that the prediction results agree well
with the measurement results. The sensitivity of CNN for hys-
teresis loops prediction with respect to the hyperparameters are
investagted. A set of empirical hyperparameter configurations is
put forward to guarantee an efficient convergence. This research
shows that the proposed approach can be an efficient tool to pre-
dict the hysteresis loop of ferromagnetic materials under different
circumstances, which can potentially contribute to nonlinear hys-
teresis FEM computation.

Keywords – Convolutional neural network, deep learning, ferro-
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1. INTRODUCTION

Ferromagnetic materials play an irreplaceable role in indus-
trial technology. It has been widely used in navigation, machin-
ery, medical and other fields. Reasonable and valid application
of ferromagnetic materials requires knowing the detailed phys-
ical parameters, especially the ferromagnetic properties. In en-
gineering practice, we usually obtain the required parameters
by measuring the magnetization curve, hysteresis loop. Due to
the wide application field and the particularity of ferromagnetic
materials, we are often forced to make multiple measurements
of the same group of material at different frequencies, magnetic
flux densities, exciting currents and so on [1]. However, lots
of experimental measurements can be time-consuming and also
very expensive due to the requirements of specific test samples
as well as complex measurement systems. This has brought
some obstacles to the application of ferromagnetic materials.

On the other hand, although there is not yet a solid theoret-
ical framework, the emergence and popularity of DL offer us
a brand new approach. Over the last decade, DL has become
an unprecedented tool that can essentially improve our capa-
bility to carry out scientific research due to advances in theory
(solvers and optimizers) and infrastructure (larger memory and
faster graphic processing units) [2]. CNN has gained tremen-
dous popularity and has been widely used because of its abil-
ity to automatically capture high-level representative features
of image, especially when it comes to computer vision [3, 4].
Deep learning, in particular, CNN has conquered many fields
and achieved remarkable performance, especially in computer

vision. Thanks to its sparse connectivity and shared weights,
CNN can extract high-dimensional features from image data,
especially effective when the data size is large. This makes DL
a possible method to solve tasks involved with a large number
of variables and complicated relationships [2]. We have done
some previous work in this field, including applied CNN U-net
in the optimal mesh refinement for the NDT problem [5] and
the magento-thermal coupled analysis for the transformer [6]
and got some satisfactory performances.

In this paper, a surrogate model based on CNN U-net is put
forward to accelerate the hysteresis loops measurement of fer-
romagnetic materials. Based on a certain number of experimen-
tal measurements, these results are translated into pictures and
labeled with the corresponding parameters. From the measure-
ment data, two datasets are considered. The first one is used for
the training samples to train the neural network and update the
network weights iteratively. The rest of the other results are used
for the cross-validation procedure to validate the effectiveness of
the trained CNN model. The prediction results agree well with
the measurement results, it is shown that the proposed method
can be used as an efficiency tool to predict the hysteresis loop of
ferromagnetic materials under different circumstances. Besides,
based on measurement results and numerical experiments, we
put forward a set of "empirical optimal" hyperparameters base-
line configuration that can ensure the effective converge of the
CNN. On this basis, we further conduct a sensitivity analysis
of CNN U-net to explore the effects of hyperparameters on the
model.

2. MEASUREMENT AND METHODOLOGY
Any forms of surrogate models require a certain number of

the dataset so it can be effectively trained. To come up with re-
liable models, one has to have reliable data: the dataset should
be able to represent all the situations that the surrogate model
is intended for. In this scenario, we take the hysteresis loops
obtained by experimental measurements as ground truth, part of
these samples were used to train the model, the rest of the other
samples are used to verify the accuracy of the model through
cross-validation. After effective training of the model, the hys-
teresis loops under other circumstances within the parameter
range of the database can be predicted by interpolation.

2.1. Measurement results

The measurements were performed on the MPG200D Brock-
haus equipment with an Epstein frame as illustrated in Fig-
ure 1(a) and Figure 1(b). Hysteresis loops were measured at
different frequencies and different peaks of magnetic flux den-
sity: the frequency ranges from 5 Hz to 2000 Hz, and the peak
of magnetic flux density ranges from 0.1T to 1.8T with a step
of 0.1T. All subsequent network training and learning process
are limited to the range of the above parameters. The measure-
ment results are illustrated by the hysteresis loops in Figure 2(a)
and Figure 2(b). Finally, the measurement represents 532 sets
of data, i.e. hysteresis loops, that constitute the database for the
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present study.

(a) (b)

Figure 1. Measurement device: (a) Brockhaus MPG200D equipment and (b)
Epstein samples

(a) (b)

Figure 2. Measurement results under different excitation parameters: (a)
varying magnetic flux density and (b) varying frequency

2.2. Deep learning methodology

Unlike traditional computer vision problems that have little
rules that can be formulated and summarized such as object clas-
sification, satellite identification, etc. Problems in the field of
electrical engineering are usually physics-based, which means
that their behaviors are subject to strict physical rules. This
means that there are bound to be some key parameters closely
related to the final outcome. This facilitates the labeling of sam-
ples and the application of supervised learning. All these can
help us to complete the network training more efficiently.

The schematic diagram of the proposed DL surrogate model
for hysteresis loop prediction of ferromagnetic materials is de-
scribed in Figure 3. The general process can be summarized as
follows: To begin with, we translate experimental results into
256× 256 × 1 images and label them with the correspond-
ing characteristic parameters, i.e. peak magnetic flux density,
frequency, maximum magnetic field strength, remanence, coer-
civity, and the area of the hysteresis loop. Then, the labeled
database is divided into two parts. Using one part of labeled
images as training samples, the weights of the network can be
updated iteratively. The rest part is used for the cross-validation
procedure to validate the effectiveness of the surrogate model.
Once the CNN network is effectively trained, it can be used to
predict the field distributions in other cases with only label infor-
mation, thus accelerating the measurement process and saving
experimental time. Taking these hysteresis loops images with
denoted physical labels as the database, we introduce the CNN
U-net described in [6] for image-to-image training in this study.
The input is a 3-layer Gaussian distribution diagram composed
of the information of 6 labels ane the output is the correspond-
ing B-H curve. The Gaussian distribution will be converted to a
256× 256 × 3 image and used as input to the network. Mean-
while, the output target is the 256× 256 × 1 hysteresis loop
corresponding to the physical labels. In addition, it is necessary
to normalize the information of each label before generating the
Gaussian distribution.

We choose U-net, which has demonstrated great potential in
previous work, to explore the hidden relationship between the
hysteresis loop and physical labels. This network has been suc-
cessfully applied in [6] for the evaluation of magneto-thermal

coupled analysis for a power transformer and in [5] for the op-
timal mesh refinement for the non-destructive testing (NDT)
problem. U-net is a so-called “full convolutional network” that
entirely composed of convolution and up-convolution. More
detailed information about the U-net model can be found in
[6]. The adaptive moment estimation (Adam) optimization al-
gorithm is adopted to update the weights of the neural net-
work [7, 8]. The mean absolute error (MAE) is used to evaluate
the prediction results.

Figure 3. Schematic diagram of the surrogate model for hysteresis loop
prediction

3. RESULTS AND SENSITIVITY ANALYSIS
Although DL has achieved some performances in several

fields so far, it is still a well-known fact that the performance of
DL deeply depends on the richness and diversity of the dataset.
On the contrary, too many data sets can also put a heavy bur-
den on experimental testing. In addition, the specific learning
effect of the neural network is also affected by the network ar-
chitecture and hyperparameters that to be tuned for each prob-
lem respectively. Considering that the purpose of the proposed
DL surrogate model is to accelerate the measurement and re-
duce the cost, we need to investigate the scope and limitations
of the model so that we can determine whether the approach can
meet our needs. In the process of DL, besides constructing net-
work architecture, the most important work is to specify these
accompanying hyperparameters [9]. In this work, our goal is to
identify a set of "possible best" empirical hyperparameters for
hysteresis loop prediction and provide a reasonable range for
each hyperparameter. This can provide reference for future re-
search. So far, very little empirical data is available to guide
such decisions.

3.1. Baseline configuration

There are many hyperparameters such as label normaliza-
tions, training sample size, learning rate, and batch size need
to be determined so we can efficiently train the neural network.
In practice, optimizing all these hyperparameters synchronously
is simply not possible, especially when one hyperparameter will
interact with many other aspects of the optimization process, not
to mention that the interactions may be nonlinear. We first con-
sider the performance of a baseline CNN U-net configuration.



To be specific, we start with the architectural decisions and hy-
perparameters adopted in previous work [6] and described in Ta-
ble 1. Next, we will conduct the sensitivity analysis on each hy-
perparameter, and the other hyperparameters remain unchanged
during the analysis.

Table 1. Hyperparameters of the baseline configuration
Hyperparameters Value

Label normalization Yes
Number of training samples 213

Learning rate 1e-4
Batch size 4

3.2. Label normalization

Different from the geometric variables that we were dealing
with in the previous work, the physical labels in the hystere-
sis loop all have different units and their values fluctuate over
a wide range. For instance, the frequency ranges from 5 Hz
to 2000 Hz, and the peak of magnetic flux density ranges from
0.1T to 1.8T, by contrast, the maximum magnetic field strength
ranges from 30 A/m to 8800 A/m, what’s more, the area of hys-
teresis loop floats over a wide range from 0.001 W/kg to 330
W/kg. In this case, there must be some information loss if we
directly combining original physical information into the Gaus-
sian distribution. To address this problem, we preprocess the
physical label in advance to normalize the values of the differ-
ent labels to between 0 and 1.

Figure 4. Training curve with or without label normalization

The effect of label normalization is illustrated in Figure 4.
Obviously, for the same network architecture and hyperparam-
eters, the network performance is greatly improved after the in-
troduction of normalization. The MAE greatly dropped from
0.1 to about 0.02.

3.3. Number of training samples

According to some of our previous research in [5, 6], the
most dominant hyperparameters are generally training sample
size, learning rate and batch size. Hence, we will focus on these
three factors with the greatest impact and conduct the sensitiv-
ity analysis in this work. The original objective of this paper is
to accelerate the hysteresis loops measurement and reduce ex-
perimental cost. The proposed approach can reduce the num-
ber of measurements by predicting B-H curve without measure-
ment once the model has been successfully trained by part of the
ground truth data. The necessary condition to get a successful
trained network is that enough training samples are available.
The sample size is critical for learning effectiveness. Unfortu-
nately, some DL models only work well when the data sets are
very large, often over tens of thousands of samples [10]. In this
case, the preparation of a large number of hysteresis loop test

data itself is very time-consuming and laborious, which makes
our acceleration auxiliary model meaningless.

From this aspect, given our previous work experience, U-net
is a very powerful model when it comes to this situation. One of
its greatest advantages is that it can be effectively trained when
only a few training samples are available. Due to its excellent
capacity for data augmentation and segmentation, U-net can ex-
tract the implicated patterns and associations between the inputs
and outputs. In this case, there are 532 samples of B-H curve
images, with 6 physical labels for which sample. 532 samples
were divided into 10 groups from #0 to #9, with 53 or 52 sam-
ples in each group. Among which, some groups were used as
training samples, and the rest groups are taken as test samples.
The performance of the proposed surrogate model, in terms of
hysteresis loops prediction, is shown in Figure 5 for different
sizes of training samples.

Figure 5. Training curves with different sizes of training samples

As we can seen in Figure 5. The proposed model can be ef-
fectively trained with only 40%–50% of the available samples.
This makes the model an effective tool to reduce the experimen-
tal cost as well as the required memory for experimental data
storage. The trained model can output the rest 256 prediction
results within 1 minute. The proposed surrogate model has been
proven to be effective in accelerating hysteresis loops measure-
ment of ferromagnetic materials.

3.4. Learning rate

In addition to the proper network architecture and sufficient
database, the CNN U-net still requires practitioners to set ac-
companying hyperparameters, including the learning rate and
batch size. The learning rate is the amount of change to the
model during each step of the iterative process, it controls the
speed at which the model learns. Generally, a large learning rate
allows the model to learn faster, with the cost of a more oscillat-
ing convergence process. A smaller learning rate may allow the
model to learn a more optimal set of network weights but may
take much longer to converge. A perfectly configured learning
rate is essential to an effective training process.

As shown in Figure. 6, the optimal learning rate for B-H curve
prediction is about 2e-5–5e-4. Inappropriate learning rates will
lead to invalid training.

3.5. Batch size

The batch size controls the number of training examples uti-
lized in one update to the network weights. An epoch is the
entire training data exposed to the network, batch-by-batch. In
general, the larger the batch size, the more accurate the decent
gradient, but with that comes a significant increase in the time-
consuming and storage requirement of one update. By contrast,
the smaller the batch size, the more instability in gradient calcu-
lation, the network is harder to converge.



Figure 6. Training curves with different learning rates

Figure 7. Training curves with different batch sizes

Like the learning rate, too large or too small the batch size
will lead to invalid training. For the prediction of the hysteresis
loops, the optimal batch size is about 1–16. The out-of-range
batch size will affect the efficiency of the converging process.
With the proper network parameters, the learning process can be
fast and effective, even with only a small dataset. The MAE be-
tween prediction results and measurement results is about 0.02,
which indicates that the predicted hysteresis Loops are very ac-
curate reliable. The CNN U-net is not very sensitive to the
learning rate and batch size, which means these two parame-
ters can fluctuate over a relatively wide range and the CNN net-
work can still function normally. This reduces the difficulty of
the parameter-tunning. The comparison between the prediction
results with the effectively trained baseline configuration CNN
U-net and the measurement results are shown in Figure 8.

Figure 8. Comparison between predicted and measured hysteresis loops

For the 532 data sets of this experimental data, the proposed

surrogate model can be effectively trained and converged with
the only 40%–50% samples, which is about 213–266 samples.
The trained model can accurately predict the remaining other
samples, as shown in Figure. 8, the prediction results agree well
with the measurements. This makes the model an effective tool
to accelerate the measurement process of hysteresis loops as
well as reduce the experimental cost and time.

4. CONCLUSION
In this paper, we have put forward a CNN U-net based ap-

proach to reduce the experimental cost and accelerate measure-
ments for hysteresis loops of ferromagnetic materials. Take the
measurement results obtained from the MPG200D Brockhaus
equipment with an Epstein frame as ground truth, an exten-
sive experimental analysis of supervised learning has been con-
ducted. CNN U-net was adopted to explore the hidden relation-
ship between physical parameters and B-H curves. Take parts
of experimental measurement results as training samples for U-
net, once the model can be effectively trained and converged,
the rest of other hysteresis loops under different circumstances
can be predicted without further measurement.

A set of empirical baseline hyperparameters configuration
which can make the network converge effectively is put for-
ward. With only 532 samples in total, the DL network can
achieve effective learning after trained by barely 40%–50% of
datasets. The prediction results agree well with the ground truth
obtained from measurement. The trained model can output all
the rest 256 prediction results in 1 minute. Our proposed method
shows great potential in accelerating the measurement of the B-
H curve. In addition, the sensitivity of CNN for hysteresis loops
prediction with respect to the hyperparameters are investigated.
Specifically, label normalization, training sample size, learning
rate, and batch size are detailed discussed. This can guide future
research of CNN for hysteresis loops prediction.
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